
Documentation for
Magento Developers
A Getting Started Guide to Developing Magento Extensions.

Mark Sanborn, Mark Lehm, Ryan Leising, and Richard Fowler

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Documentation for Magento Developers

Contents Copyright ©2012 Mark Sanborn, Mark Lehm, Ryan Leising, and Richard Fowler –
All Rights Reserved

Book and cover layout, design and text Copyright ©2012 Mark Sanborn, Mark Lehm, Ryan
Leising, and Richard Fowler. – All Rights Reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by means without the prior written permission of the authors, except in the case of
brief quotations embedded in critical reviews or articles.

Disclaimer

Although every effort has been made in the preparation of this book to ensure the accuracy
of the information contained therein, this book is provided ”as-is” and the publisher, the
author(s), their distributors and retailers, as well as all affiliated, related or subsidiary parties
take no responsibility for any inaccuracy and any and all damages caused, either directly or
indirectly, by the use of such information. We have endeavoured to properly provide
trademark information on all companies and products mentioned in the book by the
appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

Written by Published by

• Mark Sanborn
• Mark Lehm
• Ryan Leising
• Richard Fowler

660 York St San Francisco CA 94110

2



Content

IntroductionIntroduction
6 About the Authors
7 What This Book is Not
7 Assumptions
7 Feedback

Prepping Your Magento Enviornment forPrepping Your Magento Enviornment for
DevelopmentDevelopment

8 Installing Magento
8 MySQL Tools
9 Setting the Time
10 Turn on Symlinks
10 Turn Caching Off
11 Turning Error Reporting On
11 Turn Logging On
11 Extend the Session Timeout
12 Create a Restore Point with Magentomatic

Your First ExtensionYour First Extension
14 Hello World!
16 Write Your First Controller
19 Writing Output to the Log
20 Explore Magento Objects/Snippits
20 A Simple Admin Interface

Understanding the Magento Directory StructureUnderstanding the Magento Directory Structure
25 Code Pools
25 Sample app directory folder
26 Generate These Files Automatically
26 Verify Your Extension is Running

ModelsModels
27 Creating a Model
30 Collections and Querying
33 Creating the DB Table
34 Overriding a Model
36 Alternative Way to Override a Model

BlocksBlocks
37 Overriding a Block

ControllersControllers
39 Skipping The Block

39 Creating Links
41 Overriding a Controller
42 Creating a Custom Router

HelpersHelpers
44 Creating a Helper
44 Default Helpers

EventsEvents
45 Introduction
45 When to Use Events
45 Finding Events to Hook on to
46 Create Observer Class
47 Working with Event Objects
47 Creating Custom Events

Admin AreaAdmin Area
48 Creating a “My Company” Extensions area
48 Adding to your “My Company” area
49 Module Configuration Interface
50 Creating an Admin Controller
52 Adding Javascript

Admin GridsAdmin Grids
54 Controller
56 Grid Blocks

Working With TeamsWorking With Teams
64 Version Control
64 Modman

Bonus ChaptersBonus Chapters

Creating a Custom Extension to Test TransactionalCreating a Custom Extension to Test Transactional
EmailsEmails

67 Initializing your Extension
68 Create an Admin Backend
71 Create a Controller

A Tool For Automatically Creating Parts of your AppA Tool For Automatically Creating Parts of your App

MagentomaticMagentomatic
74 Restore Admin Access



74 Backup Database
74 Restore Database
74 Config Profiles
75 Clear Cache

MiscellaneousMiscellaneous
76 Cron Jobs
77 Logging
77 Making Sense of Magento’s Naming Conventions
78 Site-wide Notices
79 Client-side Form Validation
81 Accessing Magento Functions Outside of Magento
81 Magento’s Image Resize Helper
81 Add Column to Sales Order Table

RecipesRecipes
84 General
87 Requests
87 Session
87 Customer
88 Products
90 Orders
91 Invoices
91 Shipments
92 Cart
92 Blocks
92 Admin
93 Events
94 Enterprise
94 Miscellaneous





Chapter 1

Introduction
As you probably know Magento is one of the best open source ecommerce platforms out
there. It is packed full of great features and allows for almost unlimited flexibility and
customization; however, the Magento code base is vast and there is very little current
documentation on developing custom extensions. Prior to this book many developers come
into the Magento world and immediately find themselves puzzled by a shortage of
documentation. The process that many developers take at the beginning usually begins by
Google search which almost always turns up a stale blog post on how to implement a
specific customization to Magento. Upon further searching developers quickly realize that
there is a lack of good guides on how to get started creating a new extension. This is where
we come in.

We want to take away that two week pain period that Magento developers often face and
replace it with a guide that will introduce you to everything you need to build your
extension paired with a quick “Hello World” extension walk-through that will enable you to
build your first extension in a matter of minutes. See: Chapter 3: Your First Extension

About the Authors

Mark Sanborn

Mark is able to use his developer skills and business knowledge to see pain
points and develop simple solutions to complex problems. Mark Sanborn
has been writing developer tutorials on his blog to an audiance of a million
viewers for over five years. Mark also developed the product, RocketShipIt,

that makes integrating custom shipping rates, tracking, and labels on the web easy.

6

http://marksanborn.net
https://rocketship.it


Mark Lhem

Web/UI designer, in-house developer and systems administrator, Mark
Lehm is a web design professional offering broad and diverse technical and
project leadership talents in full life cycle design and development of
corporate websites and web marketing tools.

Richard Fowler

Richard has extensive knowledge in content, SEO/SEM and UX. He is a
content strategy and user experience design veteran with expertise in
integrating brand strategy, information architecture, SEO and SEM to
advance clients’ business goals.

What This Book is Not

This book is not intended to be an ultimate reference to every object, class, function, and
feature of Magento. Rather it is a no nonsense concise guide to get you developing Magento
extensions as fast as possible.

We believe you will be better off knowing how to access this information through code than
to look it up in a reference guide that may become stale or obsolete when Magento releases a
new version.

Assumptions

We are going to assume you are familiar with the command line, PHP, XML, Apache and
setting up a basic Magento installation.

Feedback

If any of the examples in this book are unclear, you find a typo, or just wish the book
contained a chapter on subject X please don’t hesitate to email us at: support@vonnda.comsupport@vonnda.com.

7



Chapter 2

Prepping Your Magento Enviornment
for Development
What we hope to accomplish in this section is to turn your Magento installation into an
effeciant development enviornment. This enviornement will make your life easier by
turning off cachingturning off caching so you can see changes immediately, turning on error reportingturning on error reporting so you
can see what went wrong, turning on loggingturning on logging so you can capture valuable debug
information, and other helpful things like extending the admin sessionextending the admin session so you don’t have to
constantly log in and a whole lot more.

Installing Magento

We are going to assume you have the latest version of Magento installed.

Start by downloading and installing the latest release of Magento from
magentocommerce.com.

MySQL Tools

Apart from the actual MySQL server, it is useful to have a GUI client to inspect Magento’s
database tables from time to time. The tool we most often use around the office is Sequel Pro
www.sequelpro.com. You can also use phpMyAdmin over Sequel Pro if you are used to that.

8

http://magentocommerce.com/
http://www.sequelpro.com/


Setting the Time

The first thing we want to do is make sure that our Magento installation and server have the
approriate date and time. If your server time is too far into the future or past it breaks aIf your server time is too far into the future or past it breaks a
core functionality in Magento and in some cases prevents you from being able to log incore functionality in Magento and in some cases prevents you from being able to log in.

Make sure your date/time is properly set by opening a terminal on the server hosting
Magento and type, date.

If your date or time is off, this command will get it back in sync if you have ntpdatentpdate on your
system:

sudo ntpdate us.pool.ntp.org

9



Turn on Symlinks

Magento expects your extension files to be scattered around in different folders. This not
only causes developer frustration it makes keeping your extensions under version control a
pain. Later in the book we will show you how to easily manage your extensions with version
control via symlinks. For this to work we need to turn on symlinks.

To turn symlinks on for template files:

SystemSystem > ConfigurationConfiguration > DeveloperDeveloper > Template SettingsTemplate Settings

Make sure Allow Symlinks is set to YesYes

Turn Caching Off

Nothing is more frustrating than making code changes expecting a different result only to
find out that caching has been turned on the whole time. When developing your extensions
you should always have caching turned offalways have caching turned off.

Login to the backend, go to:

SystemSystem > Cache ManagementCache Management > Select AllSelect All > DisableDisable > SubmitSubmit

Click Flush Magento Cache

10



Turning Error Reporting On

By default Magento tries to suppress error messages. In a production enviornment this is a
good thing; however, for developing we need error reporting enabled.

Open up index.php and uncomment:

ini_set('display_errors', 1);

Then set Magento to Developer Mode by changing:

if (isset($_SERVER['MAGE_IS_DEVELOPER_MODE'])) {

Mage::setIsDeveloperMode(true);

}

to this:

//if (isset($_SERVER['MAGE_IS_DEVELOPER_MODE'])) {

Mage::setIsDeveloperMode(true);

//}

Note: You could also set the $_SERVER variable but we found this method unreliable.

Turn Logging On

We also need to have logging turned on.

SystemSystem > ConfigurationConfiguration > DeveloperDeveloper

Expand the Log SettingsLog Settings.

Change to EnabledEnabled and leave the names default.

Extend the Session Timeout

Magento has a default session timeout of 15 minutes15 minutes which means you will be logged out of
the admin backend every 15 minutes which is quite annoying during development. Extend
the timeout by going to:

SystemSystem > ConfigurationConfiguration

11



SystemSystem > AdvancedAdvanced > AdminAdmin

Expand SecuritySecurity

Default is 900 seconds which is 15 minutes. Set Session Lifetime (seconds) to 86400.

This will log you out of your current session but next login will stay connected for 24 hours.

Depending on your server configuration you may also need to set your maxlifetime session
expiration time in your php.ini file for this to have an effect.

php_value session.gc_maxlifetime 86400

Create a Restore Point with Magentomatic

In this section we will breifly introduce Magentomatic and make a backup of your Magento
installation so you have a clean database of a fresh Magento installation if you ever need to
roll back for any reason.

Magentomatic is a tool developed by Vonnda to automatically manage common developer
tasks in Magento like:

• adding an admin user
• backing up the database
• restoring the database
• deleting users/products/orders
• setting config values
• clearing the cache
• verifying integrity of core files
• and more

Make a Database Backup

Make sure you have Magentomatic extracted into your Magento installation.

Change directories to magentomatic

php magentomatic.php backup

12



and follow the prompts to make a backup of the database.

For a list of commands type php magentomatic.php

13



Chapter 3

Your First Extension
Now that you’ve gotten a start on basic setup and configuration of your magento
installation, we’re going to throw you right into the thick of it and guide you through
building your first extension. Don’t worry, there will be explanations along the way, and
later chapters delve deeper into the inner workings.

Hello World!

We are first going to initialize our extension manually so you can see how the process
works. Later we will show you how we can use a tool to create these folders and files
automatically.

Step 1: Create a “Mycompany” folder under app/code/local

app

└── code

└── local

└── Mycompany

Step 2: Create a “Myfirstmodule” folder.

app

└── code

└── local

└── Mycompany

└── Myfirstmodule

Step 3: Create the following folders inside (case matters!): Block,
controllers, etc, Helper, Model, sql.

app

└── code

└── local

└── Mycompany

└── Myfirstmodule

├── Block

├── controllers

├── etc

14



├── Helper

├── Model

└── sql

Step 4: Under the etc folder create the file, config.xmlconfig.xml.

app

└── code

└── local

└── Mycompany

└── Myfirstmodule

├── Block

├── controllers

├── etc

│ └── config.xml

├── Helper

├── Model

└── sql

Step 5: Fill config.xmlconfig.xml with:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<modules>

<Mycompany_Myfirstmodule>

<version>0.1.0</version>

</Mycompany_Myfirstmodule>

</modules>

</config>

Step 6: Under, etc/modules create the file, Mycompany_Myfirstmodule.xmlMycompany_Myfirstmodule.xml

app

├── code

│ └── local

│ └── Mycompany

│ └── Myfirstmodule

│ ├── Block

│ ├── controllers

│ ├── etc

│ │ └── config.xml

│ ├── Helper

│ ├── Model

│ └── sql

└── etc

└── modules

└── Mycompany_Myfirstmodule.xml

15



Step 7: Fill Mycompany_Myfirstmodule.xmlMycompany_Myfirstmodule.xml with:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<modules>

<Mycompany_Myfirstmodule>

<!-- This activates the module, flip to false to deactivate -->

<active>true</active>

<codePool>local</codePool><!-- Remember we talked about code pools -->

</Mycompany_Myfirstmodule>

</modules>

</config>

Step 8: Make sure Magento is loading your extension, System >
Configuration > Advanced

If you see the name of your module listed it means you have followed the above steps
correctly and Magento has loaded it.

Congratulations your module is installed!!

Write Your First Controller

Step 1: Modify your config.xmlconfig.xml file in your module’s etc folder to include a new
frontend router:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<modules>

<Mycompany_Myfirstmodule>

16



<version>0.1.0</version>

</Mycompany_Myfirstmodule>

</modules>

<frontend>

<routers>

<myfirstmodule>

<use>standard</use>

<args>

<module>Mycompany_Myfirstmodule</module>

<frontName>myfirstmodule</frontName>

</args>

</myfirstmodule>

</routers>

</frontend>

</config>

Step 2: Create a new file, IndexController.phpIndexController.php under your controllers folder and fill
it with this:

class Mycompany_Myfirstmodule_IndexController extends Mage_Core_Controller_Front_Action {

public function indexAction() {

echo 'Hello World!';

}

}

Note: Our function has the name indexAction, the first part ‘index’ will be used as part of
the url.

Step 3: Go to http://yourmageinstallation/myfirstmodule/index/index/

Go to http://yourmageinstallation/myfirstmodule/index/index/

^        ^     ^

| | |

| | Function name minus 'Action'

| |

| Controller name minus 'Controller.php'

|

frontName in config.xml

Note: Since this is our index controller you could also reach this url here:

http://yourmageinstallation/myfirstmodule/http://yourmageinstallation/myfirstmodule/

17



GET and POST Variables

You can gain access to both get and post variables with:

$params = $this->getRequest()->getParams();

So if we were to change our “Hello World!” message in the IndexControler.php file to:

public function indexAction() {

print_r($this->getRequest()->getParams());

echo 'Hello World!';

}

and go to the following url: http://yourmageinstallation/http://yourmageinstallation/
myfirstmodule/?myvariable=22&another=somethingmyfirstmodule/?myvariable=22&another=something , we would see:

Array ( [myvariable] => 22 [another] => something ) Hello World!

Notice what happens when you go to this url: http://yourmageinstallation/myfirstmodule/http://yourmageinstallation/myfirstmodule/
index/index/id/22index/index/id/22

Array ( [id] => 22 ) Hello World!

This means we can also pass get variables to Magento with clean seo friendly urls!

Go ahead and create a customer on the frontend and look up your newly created customer’s
ID.

18



Lets now modify our controller slightly:

public function indexAction() {

$params = $this->getRequest()->getParams();

$customer = Mage::getModel('customer/customer')->load($params['id']);

echo 'Hello, '. $customer->getName();

}

Now go to the url substituing the id with your newly created customer’s id:

Mine: http://yourmageinstallation/myfirstmodule/index/index/id/6http://yourmageinstallation/myfirstmodule/index/index/id/6

Congratulate yourself, you now have a working url that accepts get parameters and loads
your first Magento customer object. When developing your extensions you will primarily
deal with customer, order, and product objects.

Writing Output to the Log

So you have loaded your first Magento customer object but it is not fair, we told you what to
put in your controller. How were you supposed to know that $customer->getName(); would
produce the customer’s name? What else can we do with customer objects?

19



We would like to take this opportunity and introduce the Magento log and show you how
you can determine what data you have access to.

Make sure your logs are turned on from Prepping Your Magento Enviornment forPrepping Your Magento Enviornment for
DevelopmentDevelopment chapter.

Modify your controller and add: Mage::log($customer);

public function indexAction() {

$params = $this->getRequest()->getParams();

$customer = Mage::getModel('customer/customer')->load($params['id']);

Mage::log($customer->getData());

echo 'Hello, '. $customer->getName();

}

Open up var/log/system.log and scroll to the bottom:

When developing you will probably want to have this refresh automatically when new
output is appended to the log. On Unix like systems you can use tail

tail -f var/log/system.log

Explore Magento Objects/Snippits

Take this time now to play around with some of the snippits in the Recipes chapter and try to
output various magento objects from the controller or output them to the log.

Example

public function indexAction() {

$customer = Mage::getModel('customer/customer')->load($params['id']);

print_r($customer->getData()); // outputs customer data

Mage::log(get_class_methods($customer)); // writes available customer methods to log

}

A Simple Admin Interface

We are now going to add a super simple admin interface to our extension. In later chapters
we will explore the admin area in more detail.

Create the file system.xml under the etc folder:

20



<?xml version="1.0"?><?xml version="1.0"?>

<config>

<tabs>

<mycompany_extensions translate="label">

<label>My Companies Extensions</label>

<sort_order>210</sort_order>

</mycompany_extensions>

</tabs>

<sections>

<mymodule translate="label">

<label>My Module</label>

<tab>mycompany_extensions</tab>

<frontend_type>text</frontend_type>

<sort_order>1000</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

</mymodule>

</sections>

</config>

At this point we have a menu section and tab for our extension in the backend; however, if
we were to try to view it we would see a 404 error. This is Magento’s way of saying that we
don’t have permission to view this section. It is one of the common idiosyncrasies of
working with Magento extensions.

To add the appropriate permissions add the file adminhtml.xml under the etc folder.

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<acl>

<resources>

<all>

<title>Allow Everything</title>

</all>

<admin>

<children>

<system>

21



<children>

<config>

<children>

<mymodule translate="title">

<title>My Module</title>

<sort_order>100</sort_order>

</mymodule>

</children>

</config>

</children>

</system>

</children>

</admin>

</resources>

</acl>

</config>

Now logout to make sure Magento refreshes permissions and you should see your module
and admin section.

We are now ready to add configuration settings for our extension.

Add in the following xml into system.xml under <config><sections><mymodule>

<groups>

<!-- Group of config options -->

<general translate="label">

<!-- Title of group -->

<label>General</label>

<frontend_type>text</frontend_type>

<!-- Sort order -->

<sort_order>10</sort_order>

<!-- Visibility options -->

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<!-- Expand group area by default -->

<expanded/>

<!-- Fields go here -->

<fields>

22



<enabled translate="label">

<!-- Label for field -->

<label>Enabled</label>

<!-- Type of field -->

<frontend_type>select</frontend_type>

<source_model>adminhtml/system_config_source_yesno</source_model>

<sort_order>1</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

</enabled>

</fields>

</general>

</groups>

At this point you should have a General group with a single field called enabled

You can access the value of this field using getStoreConfig(). The path will follow your xml
under the <sections> element.

Mage::getStoreConfig('myfirstmodule/general/enabled');

For fields that are boolean Magento also gives us the function getStoreConfigFlag()

Lets modify our controller to include our new field:

class Mycompany_Myfirstmodule_IndexController extends Mage_Core_Controller_Front_Action {

public function indexAction() {

// Check to see if module is enabled!

if (Mage::getStoreConfigFlag('myfirstmodule/general/enabled')) {

$params = $this->getRequest()->getParams();

$customer = Mage::getModel('customer/customer')->load($params['id']);

Mage::log($customer->getData());

echo 'Hello, '. $customer->getName();

23



} else {

echo 'This module is disabled.';

}

}

}

Now try toggling the enabled field in the admin backend and see how your controller
responds.

You now have a small taste for all of the essential bits that make up a full Magento module.
These next chapters will be devoted to diving into each section in more detail.

24



Chapter 4

Understanding the Magento Directory
Structure

Code Pools

Magento Extensions are located in one of three code pools. The code pools are: corecore, locallocal,
and communitycommunity. All of the modules distributed with the base Magento are in the core code
pool. All of the custom modules that you develop can be installed in the local code pool.
Although you can install any module in local as well as community it is best to put third-
party modules under community and change their xml file accordingly to keep third party
modules from overriding the files you are trying to override in local.

Magento will first look in locallocal, then communitycommunity, then corecore.

app/

└── code

├── community

├── core

└── local

Sample app directory folder
app/

├── code

│ └── local

│ └── Yourcompany

│ └── Yourmodule

│ ├── Block

│ ├── controllers

│ │ └── IndexController.php

│ ├── etc

│ │ └── config.xml

│ ├── Helper

│ ├── Model

│ └── sql

└── etc

└── modules

└── Yourcompany_Yourmodule.xml

25



Generate These Files Automatically

Verify Your Extension is Running

Go to SystemSystem > ConfigurationConfiguration > AdvancedAdvanced

Click the Disable Modules OutputDisable Modules Output header.

Find your extension in the list.

Congratulations your module is installed and active!

26



Chapter 5

Models
It is the Model’s job to help move data from the database into the framework. Unlike some
MVC approaches Magento’s models are mainly responsible for manipulating the data where
previously this might be done in the controller. The output, or rendering of the model data is
done by the Blocks.

Creating a Model

First start out by creating your table in the database with your favorite tool.

Under your Model folder create the file Yourmodule.php.

class Yourcompany_Yourmodule_Model_Yourmodule extends Mage_Core_Model_Abstract{

public function _construct(){

parent::_construct();

$this->_init('yourmodule/yourmodule');

}

}

27



Then Create the folder Mysql4 and create another file Yourmodule.php where id is your primary
key.

class Yourcompany_Yourmodule_Model_Mysql4_Yourmodule extends Mage_Core_Model_Mysql4_Abstract{

public function _construct(){

$this->_init('yourmodule/yourmodule', 'id');

}

}

Create the folder Yourmodule under the Mysql4 folder you just created and add the file
Collection.php.

class Yourcompany_Yourmodule_Model_Mysql4_Yourmodule_Collection extends

Mage_Core_Model_Mysql4_Collection_Abstract{

public function _construct(){

$this->_init('yourmodule/yourmodule');

}

}

The end result should look like this:

Model/

├── Yourmodule.php

└── Mysql4

├── Yourmodule

│ └── Collection.php

└── Yourmodule.php

Finally add the following into your module’s config.xml

<?xml version="1.0"?><?xml version="1.0"?>

<config>

...

<global>

...

<models>

<yourmodule>

<class>Yourcompany_Yourmodule_Model</class>

<resourceModel>yourmodule_mysql4</resourceModel>

</yourmodule>

<yourmodule_mysql4>

<class>Yourcompany_Yourmodule_Model_Mysql4</class>

<entities>

<yourmodule>

<table>your_table_name</table>

</yourmodule>

</entities>

</yourmodule_mysql4>

</models>

28



<resources>

<yourmodule_write>

<connection>

<use>core_write</use>

</connection>

</yourmodule_write>

<yourmodule_read>

<connection>

<use>core_read</use>

</connection>

</yourmodule_read>

</resources>

...

</global>

...

</config>

Verify that it works by adding this to a controller:

$myModel = Mage::getModel('yourmodule/yourmodule');

print_r($myModel);

In the event that your extension grows, or you are building a new extension that requires
creating more than one model, our current model naming convention of yourmodule/yourmodule

becomes a little unclear.

<models>

<yourmodule> <!-- model top node -->

<class>Yourcompany_Yourmodule_Model</class>

<resourceModel>yourmodule_mysql4</resourceModel>

</yourmodule>

<yourmodule_mysql4>

<class>Yourcompany_Yourmodule_Model_Mysql4</class>

<entities>

<tablenode1> <!-- table top node -->

<table>your_table_name</table>

</tablenode1>

<tablenode2> <!-- table top node -->

<table>your_other_table_name</table>

</tablenode2>

</entities>

</yourmodule_mysql4>

</models>

Here we have changed the node containing the table name. Now each table will have its
own model and will be accessed differently, yourmodule/tablenode1 and yourmodule/tablenode2. The
name of your model top node node will always be the first half of the call to your model and

29



depending on which table you want the second half of the call to your model will be a table
top node. The files created earlier will need to be duplicated for each table.

Collections and Querying

addAttributeToFilter() is a function that can be called on a product collection in Magento. In
short, it adds a condition to the WHERE part of the MySQL query used to extract a collection
from the database.

$_products = Mage::getModel('catalog/product')->getCollection()

->addAttributeToSelect(array('name', 'product_url', 'small_image'))

->addAttributeToFilter('sku', array('like' => 'UX%'))

->load();

The above code would get a product collection, with each product having it’s name, url,
price and small image loaded in it’s data array. The product collection would be filtered and
contain only products that have an SKU starting with UX.

Getting First and Last Items

$products = Mage::getModel('catalog/product')->getCollection()

var_dump($products->getFirstItem()->getData());

var_dump($products->getLastItem()->getData());

Limiting the Column Data

Using addAttributeToSelect() we can limit the data.

$products = Mage::getModel('catalog/product')

->getCollection()

->addAttributeToSelect('*'); // would return all

Where as

$products = Mage::getModel('catalog/product')

->getCollection()

->addAttributeToSelect('price');

->addAttributeToSelect('description');

// would return price and description data

Try these yourself and see the difference with

30



foreach ($products as $product) {

var_dump($product->getData());

}

Filtering

We can filter our collections with the addFieldToFilter() function. In SQL you can think of these
as your WHERE clauses.

Lets say we want to get a product by the sku SNEW0512

$products = Mage::getModel('catalog/product')->getCollection();

$products->addFieldToFilter('sku','SNEW0512');

$product = $products->getFirstItem();

var_dump($product->getData());

Lets try the Greater ThanGreater Than conditional. Simply supply an array with the conditional type and
value.

Products greater than $100:

$products = Mage::getModel('catalog/product')->getCollection();

$products->addFieldToFilter('price', array('gt' => '100'));

var_dump($products>getData());

Magento gives us lots of filter conditionals to choose from see: addAttributeToFilter
Conditionals

Debugging the Query

When developing it is often helpful to see what SQL Magento is using in the backround. You
can see what Magento is using to query the database by using the getSelect() function.

echo (string) $collection->getSelect();

For example:

$products = Mage::getModel('catalog/product')->getCollection();

echo (string) $products->getSelect();

Would output: SELECT `e`.* FROM `magento_catalog_product_entity` AS `e`

31



addAttributeToFilter Conditionals

Equals: eqEquals: eq

$_products->addAttributeToFilter('status', array('eq' => 1));

Not Equals - neqNot Equals - neq

$_products->addAttributeToFilter('sku', array('neq' => 'test-product'));

Like - likeLike - like

$_products->addAttributeToFilter('sku', array('like' => 'UX%'));

One thing to note about like is that you can include SQL wildcard characters such as the
percent sign.

Not Like - nlikeNot Like - nlike

$_products->addAttributeToFilter('sku', array('nlike' => 'err-prod%'));

In - inIn - in

$_products->addAttributeToFilter('id', array('in' => array(1,4,74,98)));

When using in, the value parameter accepts an array of values.

Not In - ninNot In - nin

$_products->addAttributeToFilter('id', array('nin' => array(1,4,74,98)));

NULL - nullNULL - null

$_products->addAttributeToFilter('description', 'null');

Not NULL - notnullNot NULL - notnull

$_products->addAttributeToFilter('description', 'notnull');

Greater Than - gtGreater Than - gt

32



$_products->addAttributeToFilter('id', array('gt' => 5));

Less Than - ltLess Than - lt

$_products->addAttributeToFilter('id', array('lt' => 5));

Greater Than or Equals To- gteqGreater Than or Equals To- gteq

$_products->addAttributeToFilter('id', array('gteq' => 5));

Less Than or Equals To - lteqLess Than or Equals To - lteq

$_products->addAttributeToFilter('id', array('lteq' => 5));

Creating the DB Table

We recommend creating the database table via command line or your favorite SQL tool and
then dumping the SQL out and creating the installer script when your extension is complete.

In your extension’s directory create a folder in the sql folder called: modulename_setup.

In modulename_setup create the file mysql4-install-1.0.0.php.

$installer = $this;

$installer->startSetup();

$installer->run("

YOURSQLGOESHERE

");

$installer->endSetup();

Replace YOURSQLGOESHERE with the sql dumped form the command line or your SQL
tool.

Create: Model > Resource > Mysql4 > Setup.php

class Yourcompany_Yourmodule_Model_Resource_Mysql4_Setup extends Mage_Core_Model_Resource_Setup {

}

Finally, add the resources node to your modules config.xml. This will tell magento what model
to use when your module is installed, or if it finds the version of your module has changed.

33



<config>

...

<global>

...

<resources>

<yourmodule_setup>

<setup>

<module>Yourcompany_Yourmodule</module>

<class>Yourcompany_Yourmodule_Model_Resource_Mysql4_Setup</class>

</setup>

</yourmodule_setup>

<connection>

<use>core_setup</use>

</connection>

<resources>

...

</global>

...

</config>

Overriding a Model

Many times we need to implement new functionality of existing Magento core classes, but
we don’t want to modify core classes as this might break during Magento ugrades. This is
where overriding comes in, also known as “rewrite” or “extend”.

Start by finding the model you want to override in the app/core/Mage folder.

Copy the directory structure into your module’s model dir.

i.e. overrideing the Order model in app/code/Mage/Sales/Model/Order.php

app/code/local/Yourstore/Yourmodule/Model/Sales/Model/Order.php

Strip out everything inside the class in the file you just copied except the function(s) you
want to override. In this example I am looking for _setState function because I want to
activate code every time an order status changes.

You will be left with something like:

class Mage_Sales_Model_Order extends Mage_Sales_Model_Abstract {

}

34



You will be extending Mage_Sales_Model_Order in the same way Magento extended
Mage_Sales_Model_Abstract so change this to:

class WHAT_DO_I_PUT_HERE extends Mage_Sales_Model_Order {

}

WHAT_DO_I_PUT_HEREWHAT_DO_I_PUT_HERE will be replaced by Yourcompany followed by underscore,
Yourmodule, and then the directory structure you have in your app/code/local/Yourcompany/

Yourmodule/ realtive to the Order.php file.

Example:

Yourcompany_Yourmodule_Model_Sales_Model_Order

Make your desired changes to the function you have left in your new class.

Last step: add the override into your config.xml

...

<global>

<models>

<yourmodule>

<class>Model</class>

<yourmodule>

<sales><!-- Notice the directory structure -->

<rewrite>

<!-- order tag is used here as it is under sales -->

<order>Yourcompany_Yourmodule_Model_Sales_Model_Order</order>

</rewrite>

</sales>

</models>

...

Troubleshooting

Not working? Try making a syntax error in your newly created class and see if you get fatal
errors.

If you dont get the error you need to make some changes to your config.xml file.

35



Alternative Way to Override a Model

Although it is not as robust and not extension specific you can also override a core model by
replicating the folder structure under the app/code/local directory. This is a step above
modifying the core file itself, which you should never do.

For example if you wanted to override the model app/code/core/Mage/Customer/Model/Address.php you
could simply copy that file into app/code/local/Mage/Customer/Model/Address.php.

You can ensure your file is being called by making an intentional PHP syntax error and
going to a page that calls that model. In our example if we make an intentional PHP syntax
error, browse to the backend, and open a customer we would see the fatal error. This proves
that Magento is calling our modified file and not the one in app/code/core.

If you don’t want to override simply delete/rename the folder under app/code/local/Mage and
Magento will continue loading from app/code/core/Mage.

Although the traditional way of overriding a model is better this method is great if you
simply want to do a quick test. You can always pull the model out of the local folder and
include it in the extension later.

36



Chapter 6

Blocks
As you will see later in the Controller section in general Magento’s Controller does not pass
a data object to the view or set properties on the view object. Instead, the view will directly
reference a system model to get the information necessary for rendering output.

Basically this means that the Magento’s view in the traditional MVC pattern has been
seperated into Blocks and Templates

Magento blocks and templates go hand in hand for each block you will have a
corresponding .phtml template file.

Overriding a Block

Copy the folder structure of the core block you want to override under your Block folder and
copy over the file.

For example if I wanted to override the core file: code/core/Mage/Adminhtml/Block/Catalog/Product/
Attribute/Edit/Tab/Main.php

Block/

└── Adminhtml

└── Block

└── Catalog

└── Product

└── Attribute

└── Edit

└── Tab

└── Main.php

Open up your copy of Main.php and modify the class name to match the structure and extend
the original class:

class Yourcompany_Yourmodule_Block_Adminhtml_Block_Catalog_Product_Attribute_Edit_Tab_Main extends

Mage_Adminhtml_Block_Catalog_Product_Attribute_Edit_Tab_Main

and finally add to your config.php

37



<?xml version="1.0"?><?xml version="1.0"?>

<config>

...

<global>

<blocks>

<adminhtml>

<rewrite>

<catalog_product_attribute_edit_tab_main>Yourcompany_Yourmodule_Block_Adminhtml_Block_Catalog_Product_Attribute_Edit_Tab_Main</catalog_product_attribute_edit_tab_main>

</rewrite>

</adminhtml>

</blocks>

</global>

...

</config>

38



Chapter 7

Controllers
In general the controller’s job is to alter Models, and then tell the system it’s layout
rendering time. That’s it. At that point it’s the Layout/Blocks job to display an HTML on the
page depending on the state of your Models.

Skipping The Block
$this->loadLayout();

$this->getLayout()->getBlock('root')->setTemplate('yourmodule/get.phtml');

// Expose a variable to the template

// $this->getLayout()->getBlock('root')->setTemplate('recommender/get.phtml')

//            ->assign('r', $r);

$this->renderLayout();

Creating Links

When creating links between your controllers it is best to use these helper functions. In
admin controllers these are a necessity as admin urls contain a security token and without it
your links will redirect back to the admin dashboard.

/* Redirect to certain url  */

$this->_redirectUrl($url)

/* Redirect to certain path */

$this->_redirect($path, $arguments=array())

/* Redirect to success page */

$this->_redirectSuccess($defaultUrl)

/* Redirect to error page */

$this->_redirectError($defaultUrl)

/* Set referer url for redirect in response */

$this->_redirectReferer($defaultUrl=null)

/*  Identify referer url via all accepted methods (HTTP_REFERER, regular or base64-encoded request param) */

$this->_getRefererUrl()

/* Check url to be used as internal */

$this->_isUrlInternal($url)

39



There are several special values that effect the url which can be passed in as the second
argument.

Here is a quick reference:

KeyKey TypeType MeaningMeaning

_absolute n/a No effect. URLs are always generated as absolute.

_current bool Uses the current module, controller, action and parameters

_direct string Simply append to the base URL (Uniform Resource Locator), same
effect as passing to $routePath. See _store

_escape bool Uses &amp; instead of &

_forced_secure bool Uses the secure domain given in configuration

_fragment string The last part of the URL (Uniform Resource Locator) after a #

_ignore_category bool Only applies to Mage_Catalog_Model_Product_Url::getUrl(). Prevents
category rewrite from being used.

_nosid bool Prevents a SID query parameter being used when referencing another
store

_query
string
or
array

If an array it is converted into a string like ?key=value&key=value which
will become the $_GET variable.

_secure bool Uses the secure domain if allowed in configuration

_store int or
string

Either the numeric store ID or textual store code. It will use the correct
domain as the base URL (Uniform Resource Locator).

_store_to_url bool Adds ___store to the query parameters. Useful for targetting a store
that doesn’t have an unique domain.

_type string
link is the default. direct_link is useful for bypassing the “store code in
URLs” feature. js, media and skin append the domain (and possibly
store code) with the relevant directory.

_use_rewrite bool Looks up the module/controller/action/parameters in the database
for a search engine friendly equivalent.

40



Overriding a Controller

Replicate the folder structure under your extension’s controllers folder and copy over the
controller you want to modify.

For example if you wanted to override Mage/CatalogSearch/controllers/ResultController.php you
would create the following:

controllers/

└── CatalogSearch

└── ResultController.php

In your config.xml add:

<config>

...

<frontend>

<routers>

<catalogsearch>

<args>

<modules>

<yourcompany_yourmodule

before="Mage_CatalogSearch">Yourcompany_Yourmodule_CatalogSearch</yourcompany_yourmodule>

</modules>

</args>

</catalogsearch>

</routers>

</frontend>

...

</config>

Alter the controller you copied over:

Add: require_once 'Mage/CatalogSearch/controllers/ResultController.php'; as controlleres don’t autoload

Change the class declaration:

class Yourcompany_Yourmodule_CatalogSearch_ResultController extends Mage_CatalogSearch_ResultController {

Make an intentional PHP syntax error to make sure your controller is getting loaded as the
default Mage controller will load if your’s is not found.

If you see your error, that is it. Modify the controller to fit your needs.

41



Creating a Custom Router

Create your controller as normal

In your config.xml add:

<stores>

<default>

<web>

<routers>

<yourmodule_custom>

<area>frontend</area>

<class>Yourcompany_Yourmodule_Controller_Router_Custom</class>

</yourmodule_custom>

</routers>

</web>

</default>

</stores>

In your frontend router section add:

// Change to

//<use>standard</use>

<use>yourmodule_custom</use>

Under the code folder create Controller > Router > Custom.php

Add the following php and customize it to your custom route.

class Yourcompany_Yourmodule_Controller_Router_Custom extends Mage_Core_Controller_Varien_Router_Standard {

public function match(Zend_Controller_Request_Http $request) {

$path = explode('/', trim($request->getPathInfo(), '/'));

// If path doesn't match your module requirements

if (count($path) > 3 && $path[0] != 'YOURFRONTENDNAME') {

return false;

}

// Define initial values for controller initialization

$module = $path[0];

$realModule = 'Yourcompany_Yourmodule';

$controller = 'index';

$action = 'index';

$controllerClassName = $this->_validateControllerClassName(

$realModule,

$controller

);

// If controller was not found

if (!$controllerClassName) {

return false;

}

42



// Instantiate controller class

$controllerInstance = Mage::getControllerInstance(

$controllerClassName,

$request,

$this->getFront()->getResponse()

);

// If action is not found

if (!$controllerInstance->hasAction($action)) {

return false; //

}

// Set request data

$request->setModuleName($module);

$request->setControllerName($controller);

$request->setActionName($action);

$request->setControllerModule($realModule);

// Set your custom request parameter

$request->setParam('id', $path[2]);

// dispatch action

$request->setDispatched(true);

$controllerInstance->dispatch($action);

$request->setRouteName('YOURROUTENAME');

// Indicate that our route was dispatched

return true;

}

}

43



Chapter 8

Helpers
Helpers are a way to refactor code into simple helper functions which can be used in
controllers, blocks, and templates.

Creating a Helper

Start by declaring your helper in your config.xml file.

<global>

<helpers>

<yourmodule>

<class>Yourcompany_Yourmodule_Helper</class>

</yourmodule>

</helpers>

</global>

Under the Helper folder create the file, Data.php

class Yourcompany_Yourmodule_Helper_Data extends Mage_Core_Helper_Abstract {

public function hello() {

return 'hello there';

}

}

You can now call your helper by doing:

Mage::helper('yourmodule')->hello();

Default Helpers

Magento comes with two handy helpers.

• htmlEscape - $this->htmlEscape($comment);

• __() - $this->__('A sentence you later might want to convert to another language');

44



Chapter 9

Events

Introduction

Events allow developers to plug in to key areas of Magento without having to override
models/controllers.

Magento raises events in key areas of Magento work flows such as customer creation,
product saved, customer login, customer logout and more. An example would be the event
‘customer_register_success’ which will be raised by Magento immediately after a customer
registers to your store.

When to Use Events

If you need to completely change or extend core logic you are usually better off overriding
core files. If you just need to add to the core logic we try to use events as they are a little less
invasive and tend to break less after Magento upgrades.

Finding Events to Hook on to

Open a terminal and go to the app directory cd magengo/app.

To find all events use: grep -r 'dispatchEvent' *

To narrow it down by keyword try:

grep -r 'dispatchEvent' * | grep 'keyword'

Lets say I am looking to create a function that is triggered anytime a person registers for a
new account we would search for registerregister.

grep -r 'dispatchEvent' * | grep register

AccountController.php: Mage::dispatchEvent('customer_register_success',

Invoice.php: Mage::dispatchEvent('sales_order_invoice_register', array($this->_eventObject=>$this, 'order'

=> $order));

CreditmemoController.php: Mage::dispatchEvent('adminhtml_sales_order_creditmemo_register_before', $args);

45



Alternative Way to Find Events to Hook on to

Make sure you have logging turned on.

Open app/Mage.php.

In the dispatchEvent function add the following line:

Mage::log($name);

Trigger a front end action you wish to tie to. i.e. add a product to the cart, login, logout, etc.

Take a look in var/log/system.log for a list of all events that were fired off.

Don’t forget to change Mage.php back when you are done.

Create Observer Class

In your module under the folder Model create a new file called Observer.php.

class Yourcompany_Yourmodule_Model_Observer {

public function foobar($observer) {

Mage::log('foobar ran!!');

}

}

<config>

...

<global>

<events>

<customer_register_success>

<observers>

<yourcompany_yourmodule_model_observer>

<class>Yourcompany_Yourmodule_Model_Observer</class>

<method>foobar</method>

</yourcompany_yourmodule_model_observer>

</observers>

</customer_register_success>

</events>

</global>

...

</config>

Trigger the event, in this case I will trigger the event by signing up and creating a new user
account.

46



Once you trigger you should see a log entry in the log: DEBUG (7): foobar ran!!

Working with Event Objects

Events often contain objects which you can gather information from or trigger a change.

You can tell what objects an event has by looking at the second argument of the dispatchEvent()

object.

For this example if we were to open app/code/core/Mage/Customer/AccountController.php we can see:

Mage::dispatchEvent('customer_register_success',

array('account_controller' => $this, 'customer' => $customer)

);

A customer object which we could use to get/set customer data and an account_controller
object which we could use to trigger a redirect for example.

If you are unsure what objects your event has just open the file you found in the Finding
Events to Hook on to section and view the second argument of dispatchEvent().

Creating Custom Events

You can also trigger your own events so that other code you or others write can hook onto
them by just calling dispatchEvent().

Mage::dispatchEvent('mycustom_event_trigger_name', array('myobject' => $myobject));

47



Chapter 10

Admin Area

Creating a “My Company” Extensions area

Once logged into the admin area of Magento, hover over the System menu and click on
Configuration at the bottom. If you haven’t already been in here, this is where a lot of
configuration for magento itself is defined, hence the name in the menu.

If your extensions have settings pages, creating a new tab

Adding to your “My Company” area

Add your module into the adminhtml.xml of your “My Company” extension.

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<sections>

<mycompany_mymodule translate="label">

<class>separator-top</class>

<label>My Extension</label>

<tab>mycompanytab</tab>

<sort_order>133</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<groups>

<general translate="label">

<label>My Extension</label>

<frontend_type>text</frontend_type>

<sort_order>10</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<fields>

...

</fields>

</general>

</groups>

</mycompany_mymodule>

</sections>

</config>

48



Note: You must log out before you can view your new page in the admin section.

Module Configuration Interface

Types of fields (frontend_type):

You can find the classes for the fontend_type in /lib/Varien/Data/Form/Element/

Common types:

• Button
• Checkboxes
• Checkbox
• Date
• File
• Hidden
• Imagefile
• Image
• Label
• Link
• Multiline
• Multiselect
• Note
• Obscure
• Password
• Radio
• Radios
• Reset
• Select
• Submit
• Textarea
• Text
• Time

49



Defining Default Values

This is done in Yourcompany/Yourmodule/etc/config.xml:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<default>

<mymodule>

<general>

<enabled>1</enabled>

</general>

</mymodule>

</default>

</config>

Creating an Admin Controller

Add this to create the link to your new controller in your config.xml file:

<config>

...

<adminhtml>

<menu>

<sales>

<children>

<yourmodule>

<title>Your Module</title>

<sort_order>400</sort_order>

<action>adminyourmodule/adminhtml_index/index</action>

</yourmodule>

</children>

</sales>

</menu>

</adminhtml>

...

</config>

Create the folder, Adminhtml in your controllers folder

Create a controller, IndexController.php in the newly created Adminhtml folder.

class Yourcompany_Yourmodule_Adminhtml_IndexController extends Mage_Adminhtml_Controller_Action {

protected function _initAction() {

$this->loadLayout()->_setActiveMenu('sales')->_addBreadcrumb('sales','sales');

return $this;

}

public function indexAction() {

$this->_initAction();

50



$this->renderLayout();

}

}

Create a route to your controller in your config.xml file:

<config>

...

<admin>

<routers>

<adminyourmodule>

<use>admin</use>

<args>

<module>Yourcompany_Yourmodule</module>

<frontName>adminyourmodule</frontName>

</args>

</adminyourmodule>

</routers>

</admin>

...

</config>

Using this method will give you a URL that looks something like https://yoursite.com/index.php/

adminyourmodule/adminhtml_index/index/key/... plus the admin security key. Which looks a little
different than the typical admin URL, which isn’t a big deal, it doesn’t hurt anything. But if
you want your extension to use the same admin URL as the rest of the backend, you can
declare your router like so:

<config>

...

<admin>

<routers>

<adminhtml>

<args>

<modules>

<exports_admin before="Mage_Adminhtml">Yourcompany_Yourmodule_Adminhtml</exports_admin>

</modules>

<frontName>adminyourmodule</frontName>

</args>

</adminhtml>

</routers>

</admin>

...

</config>

This method will change your URL to https://yoursite.com/index.php/admin/adminyourmodule/index/

key/.... The way admin pages are called in your extension changes a bit with this method as

51



well, so it is a little more difficult to deal with. If you need the URL to display this way, this
is how it’s done, otherwise stick with the first approach.

You should now have a menu with a working controller

Adding Javascript

Make sure you have an admin layout in your config

<config>

...

<adminhtml>

<layout>

<updates>

<yourcompany_yourmodule>

<file>yourcompany/yourmodule.xml</file>

</yourcompany_yourmodule>

</updates>

</layout>

</adminhtml>

...

</config>

Create your layout file yourmodule.xml in app/design/adminhtml/default/default/layout/yourcompany/

In this example we will be adding our JavaScript to the sales order view page. You can
change this depending on the urls you want the JavaScript to load on or use <default> to
specify all of them.

52



<?xml version="1.0"?><?xml version="1.0"?>

<layout version="1.0.0">

<adminhtml_sales_order_view>

<reference name="head">

<action method="addJs"><script>yourcompany/yourcustomjs.js</script></action>

</reference>

</adminhtml_sales_order_view>

</layout>

Tip:Tip: To make sure your new layout is getting loaded make an intentional xml syntax error
by removing </layout> for example and you should get an error when reloading any page in
the admin backend:

Warning: simplexml_load_string(): Entity: line 4: parser error : error parsing attribute nam

Do not proceed until you see this error as it will eliminate a lot of headache down the road
when you are wondering why your JS file is not getting loaded.

At this point Magento should be attempting to load your JavaScript, you can check your
console for a missing file error as we haven’t added our JavaScript file yet.

Finally create yourcustomjs.js in js/yourcompany

I am loading jQuery in the backend so mine looks like this:

jQuery(document).ready(function($) {

$('#myButton').click(function() {

alert('hey there');

});

});

53



Chapter 11

Admin Grids
In this chapter we will show you how to create admin grids, and how to use the form
builder that will allow for creating and editing the records your grid will be displaying. We
will add to the extension created in Chapter 3 and the Model in Chapter 5. The model for
this extension will be referenced by model/table.

Controller

A good way to start here is to create a subfolder under controllers called Adminhtml, that way
you know the controller contained in this folder is used on the admin portion of your
extension. The majority of the folder structure this extension will be using is more or less
optional. It helps to keep the file purpose and structure a little clearer, but is not necessary
for functionality. Keep in mind, if you choose not to use the folders, the class definitions and
some variable values will change.

IndexController.php

class Mycompany_Myfirstmodule_Adminhtml_IndexController extends Mage_Adminhtml_Controller_Action{

public function indexAction(){

$this->loadLayout();

$this->_addContent($this->getLayout()->createBlock('myfirstmodule/adminhtml_container'));

$this->renderLayout();

}

public function newAction(){

$this->_forward('edit');

}

public function editAction(){

$id = $this->getRequest()->getParam('id', null);

$model = Mage::getModel('model/table');

if($id){

$model->load((int) $id);

if($model->getId()){

$data = Mage::getSingleton('adminhtml/session')->getFormData(true);

if($data){

$model->setData($data)->setId($id);

}

} else {

Mage::getSingleton('adminhtml/session')->addError('Does not exist');

$this->_redirect('*/*/');

}

Mage::register('data', $model);

54



}

$this->loadLayout();

$this->_addContent($this->getLayout()->createBlock('myfirstmodule/adminhtml_container_edit'));

$this->renderLayout();

}

public function saveAction(){

if($data = $this->getRequest()->getPost()){

$model = Mage::getModel('model/table');

try {

$id = $this->getRequest()->getParam('id');

$model->setData($data);

Mage::getSingleton('adminhtml/session')->setFormData($data);

if($id){ $model->setId($id); }

$model->save();

if(!$model->getId()){

Mage::throwException('Error saving record');

}

Mage::getSingleton('adminhtml/session')->addSuccess('Record was successfully saved.');

Mage::getSingleton('adminhtml/session')->setFormData(false);

$this->_redirect('*/*/');

} catch(Exception $e){

Mage::getSingleton('adminhtml/session')->addError($e->getMessage());

$this->_redirect('*/*/');

}

}

Mage::getSingleton('adminhtml/session')->addError('No data found to save');

$this->_redirect('*/*/');

}

public function deleteAction(){

if($id = $this->getRequest()->getParam('id')){

try{

$model = Mage::getModel('model/table');

$model->setId($id);

$model->delete();

Mage::getSingleton('adminhtml/session')->addSuccess('The record has been deleted.');

$this->_redirect('*/*/');

} catch(Exception $e){

Mage::getSingleton('adminhtml/session')->addError($e->getMessage());

$this->_redirect('*/*/edit', array('id' => $id));

}

}

Mage::getSingleton('adminhtml/session')->addError('Unable to find the record to delete.');

$this->_redirect('*/*/');

}

}

The first function, indexAction, is what puts the grid on the page and should look pretty
familiar by now, so we’ll move on.

The function newAction simply forwards to editAction. In edit there is a check for the id
parameter which, if set, loads the data from that id and registers it with magento. In files to

55



come there are checks to see if this registered data exists to know whether a record is being
edited or created.

The save function does its stuff inside the try. The call to the model setData function sets the
post data on the model to get ready to save it. If the id parameters exists that means a
records is being edited so it sets the id on the model, so it will save the changes to that record
instead of adding a new one.

The delete function is pretty similar to save when handling the model, just with no data and
calling delete instead of save.

Grid Blocks

These files will be in Myfirstmodule/Block/Adminhtml, just so we know these blocks are for the
admin.

Container.php

Just as the filename suggests, this file is a container for the grid.

class Mycompany_Myfirstmodule_Block_Adminhtml_Container extends Mage_Adminhtml_Block_Widget_Grid_Container{

public function __construct(){

$this->_controller = 'adminhtml_container';

$this->_blockGroup = 'myfirstmodule'; // should be named after the extension

$this->_headerText = 'Grid Header'; // defines the text for the header of the grid container

$this->_addButtonLabel = 'Add'; // lets you change the label of the button used to add a

record.

parent::__construct();

}

}

The first line in the construct method is declaring that this file controls the contents of this
container. Meaning there are options set on the container that effect the behavior of the grid.
The specified file will be a block, so this value will be the path to the file, which in this case is
Adminhtml/Container.php. If you opted against using the Adminhtml folder it will just be the name of
the file.

At the end the parent function is called. Our function is overriding variables used in the
parent function, when we’re done, the parent function is called to let it run through the rest
of its functionality without having to duplicate it.

56



Grid.php

The next file will be put into a folder named for the container file. In the case of Myfirstmodule,
this folder will be named Container.

class Mycompany_Myfirstmodule_Block_Adminhtml_Container_Grid extends Mage_Adminhtml_Block_Widget_Grid{

public function __construct(){

parent::__construct();

$this->setId('containerGrid');

$this->setDefaultSort('id');

$this->setDefaultDir('ASC');

}

protected function _prepareCollection(){

$collection = Mage::getModel('model/table')->getCollection();

$this->setCollection($collection);

return parent::_prepareCollection();

}

protected function _prepareColumns(){

$this->addColumn('id', array(

'header' => 'ID',

'align' => 'right',

'width' => '50px',

'index' => 'id'

));

$this->addColumn('enabled', array(

'header' => 'Enabled',

'align' => 'left',

'sortable' => false,

'type' => 'options',

'options' => array('No','Yes'),

'index' => 'enabled'

));

// Add additional columns

return parent::_prepareColumns();

}

public function getRowUrl($row){

return $this->getUrl('*/*/edit', array('id' => $row->getId()));

}

}

The construct function defines the id for our grid and sets the field and direction of the
default sort for the grid.

The _prepareCollection function is where the grid is given the data it is populated with.
Depending on what you’re using your grid for and where the data is coming from, this
could be where some serious magic happens. If you have data with the right models and
you’re just pulling data in directly from that table, this is pretty much all the code you need.

57



If you’re table has foreign keys for customers or products that you want the names for this is
where you add joins and fields to allow for those fields to display the info you want. Or say
your grid is displaying info on files, reports or exports, that are stored on the server. You
need to get the list of files and build your collection to pass in, you can build the collection in
this function and set it as the collection the grid will use.

Now we define the columns the grid will display in the _prepareColumns() function. The only
thing we need to do in here is use addColumn for each column and call the parent function. The
first parameter for addColumn() is a column id, next is an array of params that can define just
about anything you would want to change about the column. Header is self explanatory, as
well as align. Index is the name of the column in the table your model references that will
populate the column of the grid.

Enabled has a couple of extra options. The type options sets the type of filter to be used on
the column. Setting it to options changes the filter input from text to select, and the options
options defines the values of the new filter options filter type.

Two more options of note are sortable and filter. If you want to turn either of these off on a
column you can simply set the value to false. These are on by default and setting filter to
true will cause an error.

Lastly we have getRowUrl. This function sets the url for the records in the table. The
asterisks in the path tell it to use the same path as the current page. Instead of calling
IndexAction in the IndexController, this will call EditAction. The array passes parameters to
the edit function, passing the id of the record gives it an id to load from the model so the
data can be registered and the form and container will recognize a record is being edited.

If you have correctly setup your new extension and have a menu item that will allow you to
reach your extension in the admin you will be able to see a grid like the one below.

58



Clicking on the add button or a row at this point will give you an error, but that will be
resolved with two more files.

Edit.php

This file will sit in the same folder as Grid.php.

class Mycompany_Myfirstmodule_Block_Adminhtml_Container_Edit extends

Mage_Adminhtml_Block_Widget_Form_Container{

public function __construct(){

parent::__construct();

$this->_objectId = 'id';

$this->_blockGroup = 'myfirstmodule';

$this->_controller = 'adminhtml_container';

$this->_updateButton('save', 'label', 'Save');

$this->_formScripts[] = "";

}

public function getHeaderText(){

if(Mage::registry('data') && Mage::registry('data')->getId()){

return 'Edit';

} else {

59



return 'New';

}

}

}

A lot of the __construct method should look familiar. The last 2 lines are the new things here.
Update button does exactly what it says it does, you can change the label of the buttons, the
onclick events, etc. The formScripts array is really handy, if you want javascript on the page
written specifically for the form it can be added to this array. Once added to the array the
scripts will be added to the page automatically.

The next function, getHeaderText, is looking for registered data to determine whether to set
the form header to edit or new.

Form.php

First create a new folder Edit, or whatever you named the previous file.

Here we create the fields that are needed to create a new record. A lot of different things can
be done on this page, especially when taking advantage of the formScripts array.

class Mycompany_Myfirstmodule_Block_Adminhtml_Container_Edit_Form extends Mage_Adminhtml_Block_Widget_Form{

protected function _prepareForm(){

$form = new Varien_Data_Form(array(

'id' => 'edit_form',

'action' => $this->getUrl('*/*/save', array('id' =>

$this->getRequest()->getParam('id'))),

'method' => 'post'

));

$form->setUseContainer(true);

$this->setForm($form);

$fieldset = $form->addFieldset('form', array('legend' => 'Information'));

$fieldset->addField('enabled', 'text', array(

'label' => 'Enabled',

'required' => true,

'name' => 'enable'

));

// Add additional fields

if(Mage::registry('data')){

$data = Mage::registry('data')->getData();

} else {

$data = array();

}

$form->setValues($data);

60



parent::_prepareForm();

}

}

First thing here is to create the form object. You can define the action, method, enctype, etc.
After that we are calling setUseContainer, important if you want save button created by the
form container to work. The next line is fairly obvious in purpose, but without it the page
will only display the header and buttons. So don’t miss this line, and make sure the variable
is correct if the name changed.

The fields can be added directly to the form, but for a better aesthetic and grouping of fields
they are usually added to a fieldset that has been added to the form.

Your form with a fieldset.

Your form without a fieldset.

When adding fields to the fieldset, the first parameter is the id of the field. The id is how the
fields will be populated with data. The column name in the table the model is referencing
should be the same as this, ideally. The second parameter is the field type. This list has most,
if not all, of the possible types:

// text, time, textarea, submit, select, radio, radios, password, obscure, note, multiselect, multiline,

link, label, image, file, date, checkbox, checkboxes

61



The third parameter is the options array. There are a lot of potential options, depending on
what you are doing with the field. Here is a good list of available options:

// common - these options can be used on almost all of the field types

'label' => Mage::helper('form')->__('Title'),

'class' => 'required-entry',

'required' => true,

'name' => 'title',

'onclick' => "alert('on click');",

'onchange' => "alert('on change');",

'style' => "border:10px",

'value' => 'hello !!',

'disabled' => false,

'readonly' => true,

'after_element_html' => '<small>Comments</small>',

'tabindex' => 1

// select - two different methods to display select options. the second will give group headings

'values' => array('-1' => 'Please Select..', '1' => 'Option1', '2' => 'Option2', '3' => 'Option3')

'values' => array(

'-1' => 'Please Select..',

'1' => array(

'value' => array(array('value' => '2' , 'label' => 'Option2'), array('value' => '3' ,

'label' =>'Option3')),

'label' => 'Size'

),

'2' => array(

'value' => array(array('value' => '4' , 'label' => 'Option4'), array('value' => '5',

'label' => 'Option5')),

'label' => 'Color'

),

)

// radios, checkboxes - this will create groups of the type

'values' => array(

array('value'=>'1','label'=>'Radio1'),

array('value'=>'2','label'=>'Radio2'),

array('value'=>'3','label'=>'Radio3'),

)

// multiselect

'values' => array(

'-1' => array('label' => 'Please Select..', 'value' => '-1'),

'1' => array(

'value' => array(array('value' => '2', 'label' => 'Option2'), array('value' => '3' ,

'label' => 'Option3')),

'label' => 'Size'

),

'2' => array(

'value' => array(array('value' => '4', 'label' => 'Option4'), array('value' => '5' ,

'label' => 'Option5')),

'label' => 'Color'

62



),

)

// link

'href' => 'www.excellencemagentoblog.com'

// date

'format' => Mage::app()->getLocale()->getDateFormat(Mage_Core_Model_Locale::FORMAT_TYPE_SHORT)

If you remember back to the controller, the edit function checked if a record was being
edited and loaded the data from the model to register it with Magento. Here we check the
registry and grab the data if it exists, if not the variable is set to an empty array. Then we set
the values for the form that was just created to the data variable. If there was data in the
registry, the form will be populated with the data, otherwise the form will be empty.

With that everything should be in place. The index page of your extension should be
displaying a grid populated by the data in your model. If you have your model setup but no
data, the add button will take you to the form and allow you to save data for the grid to
display. Clicking on a row in the grid will take you to the form to edit that record.

Congratulations, you have now built a fully functioning admin grid.

63



Chapter 12

Working With Teams

Version Control

If this is the first time you are hearing about version control stop what you are doing right
now and go research the tremendous benefits you gain by using it. Version control is great
for solo developers but as soon as you start working with teams it is an absolute necessity.
This is why Joel Spolsky (creator of Stack Overflow) has made this number 1. of this 12 Steps
to Better Code.

There are reasons we need to talk about specific strategies for setting up version control with
Magento:

• Magento’s extension files are scattered in more than one directory
• Versioning the entire Magento directory would be unnecessary as there are loads of

temporary files and code you didn’t write

One way of combatting these issues is to simply put the entire directory in version control
and setup an ignore file to ignore Magento core/temp files. This strategy would be good for
a single site but doesn’t really allow you to have a seperate repository for individual
extensions.

We prefer to put all of our extensions into a single repository and utilize Modman so we can
keep all the files pertaining to a specific extension all in one place. This allows us to deploy
that extension into multiple sites and update the extension across all sites with a single
command.

We use Bitbucket as it provides free private repos and supports both Mercurial and git.

Modman

Modman stands for ModModule ManManager and is a great script built by Colin Mollenhour which
can be found at: github.com/colinmollenhour/modman

From the project description:

64

http://www.joelonsoftware.com/articles/fog0000000043.html
http://www.joelonsoftware.com/articles/fog0000000043.html
https://bitbucket.org/
https://github.com/colinmollenhour/modman


"Developing extensions for software that doesn't allow you to separate your files from core
files, and keeping that extension under version control and making it easy to deploy is now
much, much easier. Development of this script was inspired by Magento which forces you to
mix your extension files all throughout the core code directories. With modman, you can
specify in a text file where you want your directories and files to be mapped to, and it will
maintain symlinks for you so that your code is easy to hack and deploy."

Modman allows us to keep our extensions seperate from Magento and simply link the files
to the locations Magento expects them to be. This makes version control easy, deployment to
multiple magento installations easy, and also keeps the files in a single easy to find folder.

65



Chapter 13

Bonus Chapters

66



Chapter 14

Creating a Custom Extension to Test
Transactional Emails
In this tutorial we will build an extension from scratch with an admin backend which we can
use to:

• Demonstrate the ability to send transactional emails from a custom module
• Use this module to easily test customizations to transactional emails

If you do any email template customizations at all the time you will save using this module/
technique will pay for this book 10 times over.

Initializing your Extension

By now you should know the drill:

Under Mycompany folder create a new extension called Transactionaltest

app/

└── code

└── local

└── Mycompany

└── Transactionaltest

Build your extension folder structure:

app/

└── code

└── local

└── Mycompany

└── Transactionaltest

├── Block

├── controllers

├── etc

├── Helper

├── Model

└── sql

Add in your config.xml file:

67



<?xml version="1.0"?><?xml version="1.0"?>

<config>

<modules>

<Mycompany_Transactionaltest>

<version>0.1.0</version>

</Mycompany_Transactionaltest>

</modules>

</config>

Create your module file: Mycompany_Transactionaltest.xml under app/etc/modules:

app/

├── code

│ └── local

│ └── Mycompany

│ └── Transactionaltest

│ ├── Block

│ ├── controllers

│ ├── etc

│ │ └── config.xml

│ ├── Helper

│ ├── Model

│ └── sql

└── etc

└── modules

└── Mycompany_Transactionaltest.xml

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<modules>

<Mycompany_Transactionaltest>

<active>true</active>

<codePool>local</codePool>

</Mycompany_Transactionaltest>

</modules>

</config>

To make sure your module is initialized properly go to: SystemSystem > ConfigurationConfiguration >
AdvancedAdvanced

Create an Admin Backend

Create a system.xml in your etc folder:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<sections>

<mycompany_transactionaltest translate="label">

68



<class>separator-top</class>

<label>Test Transactional Emails</label>

<tab>advanced</tab>

<sort_order>133</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<groups>

<general translate="label">

<label>Transactional Test</label>

<frontend_type>text</frontend_type>

<sort_order>10</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<fields>

<enabled translate="label">

<label>Enabled</label>

<frontend_type>select</frontend_type>

<source_model>adminhtml/system_config_source_yesno</source_model>

<sort_order>1</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

</enabled>

</fields>

</general>

</groups>

</mycompany_transactionaltest>

</sections>

</config>

Here we are adding a link under the ADVANCED section on the side navigation indicated
by the <tab>advanced</tab> section.

If you go to the backend admin section now you should see the link but it will currently
display a 404 page as we haven’t given access to it yet.

Create an adminhtml.xml file under the etc folder:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

<acl>

<resources>

<all>

<title>Allow Everything</title>

</all>

<admin>

<children>

<system>

69



<children>

<config>

<children>

<mycompany_transactionaltest translate="title">

<title>Transactional Test</title>

<sort_order>101</sort_order>

</mycompany_transactionaltest>

</children>

</config>

</children>

</system>

</children>

</admin>

</resources>

</acl>

</config>

Make sure to log out to refresh the permissions and you should now be able to view your
newly created admin page.

Now we are going to want a dropdown of all available transactional email templates.
Luckily Magento does this already in the backend under Sales Emails so we can model after
that.

70



In your system.xml file in the <fields> tag add in:

<email_template translate="label">

<label>Email Template</label>

<frontend_type>select</frontend_type>

<source_model>adminhtml/system_config_source_email_template</source_model>

<sort_order>6</sort_order>

<show_in_default>1</show_in_default>

<show_in_website>1</show_in_website>

<show_in_store>1</show_in_store>

<comment>Email template to go out</comment>

</email_template>

Create a Controller

Under the controllers folder add the file IndexController.php

class Mycompany_Transactionaltest_IndexController extends Mage_Core_Controller_Front_Action {

public function testAction(){

echo 'can you see this';

}

}

Note:Note: I typically start out all my controllers like this so I can tell if my config is getting
loaded properly.

And add the router to your config.xml file:

<?xml version="1.0"?><?xml version="1.0"?>

<config>

...

<frontend>

<routers>

<transactionaltest>

<use>standard</use>

<args>

<module>Mycompany_Transactionaltest</module>

<frontName>transactionaltest</frontName>

71



</args>

</transactionaltest>

</routers>

</frontend>

...

</config>

Once you verified your controller is working and you can see the text can you see this you can
swap out the code for something a little more productive:

class Mycompany_Transactionaltest_IndexController extends Mage_Core_Controller_Front_Action {

public function testAction(){

$customer_id = 6; // A valid customer id from the backend

$customer = Mage::getModel('customer/customer')->load($customer_id);

$customer_data = $customer->getData();

$full_name = $customer_data['firstname']. ' '. $customer_data['lastname'];

$to_email = $customer_data['email'];

// Pass in variables you want in your email template.

// If you are testing an email regaring an order like (new-order)

// you can load an order object and pass it in here.

$email_variables = array();

$email_variables['customer'] = $customer;

//$email_variables['order'] = Mage::getModel('sales/order')->load($yourorderid);

$email_variables['subscriber'] = 'foobar';

$email_variables['yourvariable'] = 'whateveryouwant';

$email = Mage::getModel('core/email_template');

$email->sendTransactional(

// This line corresponds and match the tags in system.xml

// It returns the id of the email template selected in the admin backend

(integer) Mage::getStoreConfig('mycompany_transactionaltest/general/email_template'),

'general', // From Address: general, sales, support, custom1, custom2

$to_email,

$full_name,

$email_variables

);

}

}

Thats it, change the $customer_id to a customer that you made with a valid email address,
select an email template in the backend and hit the url for your contoller to fire off the email.

Not only do you now know how to send transactional emails from an extension, you also
have a very useful extension for testing different email templates.

72



Chapter 15

A Tool For Automatically Creating Parts
of your App
Generating all those files and folders necessary to start building your extension can be a
pain.

php magentomatic.php create

Follow the prompts

73



Chapter 16

Magentomatic

Restore Admin Access

From the magentomatic directory run, php magentomatic.php password

You can now log in with the account:

• username: magentomaticmagentomatic
• password: magentomaticmagentomatic

Remember to change your password after logging in.

Backup Database

From the magentomatic directory run php magentomatic.php backup

and follow the prompts to make a backup of the database.

Restore Database

WARNING: This will write to your Database, use caution when using this.WARNING: This will write to your Database, use caution when using this.

From the magentomatic directory run php magentomatic.php restore

and follow the prompts to restore.

Config Profiles

Magentomatic has a great way of automatically setting and saving Magento configuration
settings.

To load a config profile from the magentomatic profiles directory run: php magentomatic.php config

To save your current config profile run: php magentomatic.php config myconfig

74



Note:Note: Fields that are encrypted (like payment gateway keys) will not import correctly, you
will need to set these values by hand in the backend as you normally would. This is a
security feature.

Saved profiles can be edited they follow ini syntax:

design/head/demonotice = "1"

web/unsecure/base_url = "http://192.168.1.112/magento/"

web/secure/base_url = "http://192.168.1.112/magento/"

design/package/name = "enterprise"

admin/security/session_cookie_lifetime = "86400"

dev/template/allow_symlink = 1

# Example of a comment

admin/url/custom = "http://192.168.1.112/magento/admin/"

You can see your current default paths and values by viewing Magento’s core_config_data

table.

Clear Cache

From the magentomatic directory run php magentomatic.php clear_cache

75



Chapter 17

Miscellaneous

Cron Jobs

Cron jobs are used when you want to run a portion of your code periodically. As with all
time sensitive code make sure your server time is up to date.

General XML syntax for setting up a cron in your extensions config.xml file:

<config>

...

<crontab>

<jobs>

<yourcompany_yourmodule>

<schedule>

<cron_expr>0,15,30,45 * * * *</cron_expr>

</schedule>

<run>

<model>yourmodule/model::method</model>

</run>

</yourcompany_yourmodule>

</jobs>

</crontab>

...

</config>

To run a function from your observer you can set <model> to yourmodule/observer::yourfunction

Note: If your extension has no models and you are trying to run a function from your
observer (Observer.php) you will need to make sure you have declared a model in your
config.xml:

<models>

<yourmodule>

<class>Yourcompany_Yourmodule_Model</class>

</yourmodule>

</models>

Verify the Cron Job

Hit the the cron url at http://yourmagento/cron.php or alternatively hit it from the command
line php cron.php.

76



With your favorite mysql tool open up the yourprefixifyouhaveone_cron_schedule table and verify
that yourcompany_yourmodule is listed in the job_code column.

If you look at the scheduled_at column you can see when the next time your job is scheduled to
run.

You may not see your job listed if it is set further in the future than Magento’s Schedule Ahead
for config setting in SystemSystem > ConfigurationConfiguration > SystemSystem > CronCron.

Default Cron Jobs in Magento

You can get a good list of default cron jobs and the methods they call by running this
command find . -name "*.xml" | xargs -L10 grep -A4 "cron_expr" in the root Magento directory.

Logging

Magento comes with a built-in logging which can be enabled in the back-end under SystemSystem
> ConfigurationConfiguration > DeveloperDeveloper. Make sure your var/log/ folder is writable.

Examples

Mage::log('This will show up in system.log');

Mage::log('My log variable: '.$myVariable);

Mage::log($myArray);

Mage::log($myObject);

Mage::log($myObject->debug());

Mage::logException('this will show up in exception.log');

Logging to your own file:

Mage::log('My own log file', null, 'mylogfile.log');

// Log entries will be in their own file at var/log/mylogfile.log.

Making Sense of Magento’s Naming Conventions

Whenever you are browsing the code you will notice calls to something like module/some_thing.
This string maps to a class name.

77



Examples:

$product = Mage::getModel('customer/address');

//Translates into Mage_Customer_Model_Address

$url = $this->helper('customer')->getLoginPostUrl();

//Translates into Mage_Customer_Helper_Data ("/data" is appended by default to helpers)

$url = $this->helper('giftmessage/url')->getSaveUrl();

//Translates into Mage_Giftmessage_Helper_Url

<block type="catalog/product_list" name="product_list" template="catalog/product/list.phtml" />

<!-- Even XML translates into Mage_Catalog_Block_Product_List -->

Site-wide Notices

Site-wide notices are saved in the session and displayed on the next page load. Since the
customer session is seperate from the admin session we need to use the proper session
object:

• Front end: Mage::getSingleton('core/session')
• Backend: Mage::getSingleton('adminhtml/session')

Success

Mage::getSingleton('core/session')->addSuccess('Successfully created payment option.');

Error

// Example with translate capabilities

Mage::getSingleton('core/session')->addError($this->__('An error occurred while adding item to wishlist.'));

Notice

Mage::getSingleton('core/session')->addNotice($notice);

Warning

Mage::getSingleton('core/session')->addWarning("You are not allowed to add more than ($this->max_items)

items in your cart.");

78



Client-side Form Validation

Magento has built in JS form validation provided by the Prototype library:

First you need to create a Form (form.js) object to represent your form.

<script type="text/javascript">

//< ![CDATA[

var myForm= new varienForm('formId', true);

//]]>

</script>

<form id="formId">

<!-- Just change class to validation type below (you can have multiple) -->

<input type="text" name="whatever" class="required-entry" />

</form>

• validate-selectvalidate-select Please select an option.
• required-entryrequired-entry This is a required field.
• validate-numbervalidate-number Please enter a valid number in this field.
• validate-digitsvalidate-digits Please use numbers only in this field. please avoid spaces or other

characters such as dots or commas.
• validate-alphavalidate-alpha Please use letters only (a-z or A-Z) in this field.
• validate-codevalidate-code Please use only letters (a-z), numbers (0-9) or underscore(_) in this

field, first character should be a letter.
• validate-alphanumvalidate-alphanum Please use only letters (a-z or A-Z) or numbers (0-9) only in this

field. No spaces or other characters are allowed.
• validate-streetvalidate-street Please use only letters (a-z or A-Z) or numbers (0-9) or spaces and #

only in this field.
• validate-phoneStrictvalidate-phoneStrict Please enter a valid phone number. For example (123) 456-7890

or 123-456-7890.
• validate-phoneLaxvalidate-phoneLax Please enter a valid phone number. For example (123) 456-7890

or 123-456-7890.
• validate-faxvalidate-fax Please enter a valid fax number. For example (123) 456-7890 or

123-456-7890.
• validate-datevalidate-date Please enter a valid date.
• validate-emailvalidate-email Please enter a valid email address. For example

johndoe@domain.com.
• validate-emailSendervalidate-emailSender Please use only letters (a-z or A-Z), numbers (0-9) ,

underscore(_) or spaces in this field.
• validate-passwordvalidate-password Please enter 6 or more characters. Leading or trailing spaces will

be ignored.

79



• validate-admin-passwordvalidate-admin-password Please enter 7 or more characters. Password should
contain both numeric and alphabetic characters.

• validate-cpasswordvalidate-cpassword Please make sure your passwords match.
• validate-urlvalidate-url Please enter a valid URL. http:// is required
• validate-clean-urlvalidate-clean-url Please enter a valid URL. For example http://www.example.com

or www.example.com
• validate-identifiervalidate-identifier Please enter a valid Identifier. For example example-page,

example-page.html or anotherlevel/example-page
• validate-xml-identifiervalidate-xml-identifier Please enter a valid XML-identifier. For example

something_1, block5, id-4
• validate-ssnvalidate-ssn Please enter a valid social security number. For example 123-45-6789.
• validate-zipvalidate-zip Please enter a valid zip code. For example 90602 or 90602-1234.
• validate-date-auvalidate-date-au Please use this date format: dd/mm/yyyy. For example 17/03/

2006 for the 17th of March, 2006.
• validate-currency-dollarvalidate-currency-dollar Please enter a valid $ amount. For example $100.00.
• validate-one-requiredvalidate-one-required Please select one of the above options.
• validate-one-required-by-namevalidate-one-required-by-name Please select one of the options.
• validate-not-negative-numbervalidate-not-negative-number Please enter a valid number in this field.
• validate-statevalidate-state Please select State/Province.
• validate-new-passwordvalidate-new-password Please enter 6 or more characters. Leading or trailing spaces

will be ignored.
• validate-greater-than-zerovalidate-greater-than-zero Please enter a number greater than 0 in this field.
• validate-zero-or-greatervalidate-zero-or-greater Please enter a number 0 or greater in this field.
• validate-cc-numbervalidate-cc-number Please enter a valid credit card number.
• validate-cc-typevalidate-cc-type Credit card number doesn’t match credit card type
• validate-cc-type-selectvalidate-cc-type-select Card type doesn’t match credit card number
• validate-cc-expvalidate-cc-exp Incorrect credit card expiration date
• validate-cc-cvnvalidate-cc-cvn Please enter a valid credit card verification number.
• validate-datavalidate-data Please use only letters (a-z or A-Z), numbers (0-9) or underscore(_) in

this field, first character should be a letter.
• validate-css-lengthvalidate-css-length Please input a valid CSS-length. For example 100px or 77pt or

20em or .5ex or 50%
• validate-lengthvalidate-length Maximum length exceeded.

80



Accessing Magento Functions Outside of
Magento

Create a file in the root directory and load the mage app like this:

// This line is all you need

require_once 'app/Mage.php'; umask(0); Mage::app('default');

// Example loading a category

$category = Mage::getModel('catalog/category')->load(1);

print_r($category->getData());

Magento’s Image Resize Helper

• ->constrainOnly(true) This will not resize an image that is smaller than the dimensions
inside the resize() part.

• ->keepAspectRatio(true) This will not distort the height/width of the image.
• ->keepFrame(false) This will not put a white frame around your image.
echo $this->helper('catalog/image')->init($_product, 'image')

->constrainOnly(true)

->keepAspectRatio(true)

->keepFrame(false)

->resize(350, null);

Add Column to Sales Order Table

1. Create a new module with own setup class extended from Mage_Sales_Model_Mysql4_Setup

2. Your config

<global>

<resources>

<your_module_setup>

<setup>

<module>Your_Module</module>

<class>Mage_Sales_Model_Mysql4_Setup</class>

</setup>

</your_module_setup>

</resources>

</global>

1. Installer

81



$installer = $this;

$installer->startSetup();

$installer->addAttribute(

'order',

'your_attribute_code',

array(

'type' => 'int', /* varchar, text, decimal, datetime */,

'grid' => false /* or true if you wan't use this attribute on orders grid page */

)

);

$installer->endSetup();

82



83



Chapter 18

Recipes

General

Writing to the log

Mage::log("nice to learn this ");

Mage::log($myObject);

Log to custom file

Mage::log('Your Log Message', Zend_Log::INFO, 'your_log_file.log');

Debug using Zend

echo Zend_Debug::dump($thing_to_debug, 'debug');

Get Magento Store ID

Mage::app()->getStore()->getStoreId();

Get Current Url

echo Mage::helper('core/url')->getCurrentUrl();

Get Base Paths

$base_path = Mage::getBaseDir('base');

var_dump($base_path);

$etc_path = Mage::getBaseDir('etc');

var_dump($etc_path);

Options:

• app_dir
• base_dir
• code_dir
• design_dir
• etc_dir
• lib_dir

84



• locale_dir
• media_dir
• skin_dir
• var_dir
• tmp_dir
• cache_dir
• log_dir
• session_dir
• upload_dir
• export_dir

Get Magento Media Url

Mage::getBaseUrl(Mage_Core_Model_Store::URL_TYPE_LINK);

Get Magento Media Url

Mage::getBaseUrl(Mage_Core_Model_Store::URL_TYPE_MEDIA);

Get Magento Skin Url

Mage::getBaseUrl(Mage_Core_Model_Store::URL_TYPE_SKIN);

Get Magento Store Url

Mage::getBaseUrl(Mage_Core_Model_Store::URL_TYPE_WEB);

Get Magento Js Url

Mage::getBaseUrl(Mage_Core_Model_Store::URL_TYPE_JS);

Get Secure Url

Mage::getUrl('',array('_secure'=>true)

Mage::getUrl('',array('_forced_secure'=>true)

Accessing a helper

Mage::helper('module/data')->functionName();

Format a price value?

Mage::helper('core')->formatPrice($amount);

85



Get an Array of Country names

$countryList = Mage::getResourceModel('directory/country_collection')

->loadData()

->toOptionArray(false);

echo '<pre>';

print_r( $countryList);

exit('</pre>');

Create a country dropdown

$_countries = Mage::getResourceModel('directory/country_collection')

->loadData()

->toOptionArray(false);

if(count($_countries) > 0){ ?>?>

<select name="country" id="country">

<option value="">-- Please Select --</option>

<?php<?php foreach($_countries as $_country){ ?>?>

<option value="<?php<?php echo $_country['value']; ?>?>">

<?php<?php echo $_country['label']; ?>?>

</option>

<?php<?php } ?>?>

</select>

<?php<?php } ?>?>

Create state dropdown for use in forms

$regionCollection = Mage::getModel('directory/region')

->getCollection()

->addCountryFilter('US');

$regions = $regionCollection->toOptionArray();

$general->addField('state', 'select', array(

'name' => 'state',

'label' => Mage::helper('core')->__('Location State'),

'value' => 1,

'values' => $regions,

'required' => true

));

All Store Views?

Mage::app()->getStores(); // pass true to include the admin store view, too

How do I get an instance of an attribute?

Mage::getSingleton('eav/config')->getAttribute($entityType, $attributeCode)

What if the attribute is a dropdown?

86



$product->getAttributeText('brandkey')

Price rounding

echo Mage::getStoreConfig('general/store_information/name');

echo Mage::getModel('sales/order')->formatPricePrecision($_product->getFinalPrice(), 3);

Requests

How do I get at GET/POST parameters?

Mage::app()->getRequest()->getParam('param_name'); // single parameter

Mage::app()->getRequest()->getParams(); // all parameters

Session

Get Customer Session

$customer = Mage::getSingleton('customer/session')->getCustomer();

Setting Session Variables

Mage::getSingleton('core/session')->setBlahBlahBlah('my data');

$myData = Mage::getSingleton('core/session')->getBlahBlahBlah();

Next Page Notifications

Mage::getSingleton('core/session')->addError('Custom error here');

Mage::getSingleton('core/session')->addWarning('Custom warning here');

Mage::getSingleton('core/session')->addNotice('Custom notice here');

Mage::getSingleton('core/session')->addSuccess('Custom success here');

Customer

Customer Model

$customer = Mage::getModel('customer/customer');

Get Email address by customer id

$customer = Mage::getModel('customer/customer');

$customer->load(10);

87



$data = $customer->getData();

echo $data['email'];

Get Customer Birthday

$customer = Mage::getSingleton('customer/session')->getCustomer();

echo 'birthday: '. $customer->getData('dob');

Find customers by created_at date:

$customer = Mage::getModel('customer/customer')->getResourceCollection();

$customer->addFieldToFilter('created_at', array('date' => true, 'to' => '2012-01-09 23:30:43'));

$data = $customer->getData();

print_r($data);

Get Customer Group Id

$customer = Mage::getSingleton('customer/session')->getCustomer();

echo $customer->getGroupId();

Get Customer Firstname

$customer->getName();

$customer->getFirstname();

Detect if Customer is Logged in

$this->helper('customer')->isLoggedIn()

Products

Product Model

$product = Mage::getModel('catalog/product');

Load by Sku

$product = Mage::getModel('catalog/product')->loadByAttribute('sku', $sku);

Categories

$categories = $product->getCategoryCollection();

Load Category by ID

88



$category = Mage::getModel('catalog/category')->load(3);

Get Category Name

$category->getName();

Get Category URl

$category->getUrl();

Is product purchasable?

if($_product->isSaleable()) { // do stuff }

Get Products by Category ID

$category = Mage::getModel('catalog/category')->load(5);

$products = $category->getProductCollection();

print_r($products->getData());

Product stock quantity

$qtyStock = Mage::getModel('cataloginventory/stock_item')->loadByProduct($_product)->getQty();

Get all products from an array of product ids

$products = Mage::getModel('catalog/product')->getCollection()->addAttributeToFilter('entity_id',

array('in' => $productIds));

Get the configurable/grouped/bundled product a simple product belongs to

$simpleProduct->loadParentProductIds();

$parentProductIds = $simpleProduct->getParentProductIds();

Get the simple products assigned to a configurable product

$configProduct->getTypeInstance()->getUsedProductCollection($configProduct);

Get Products by type

$collectionSimple = Mage::getResourceModel('catalog/product_collection')

->addAttributeToFilter('type_id', array('eq' => 'simple'));

Get Attribute Set Id

$product->getAttributeSetId();

89



Get Attribute Set Name

$attributeSetName = Mage::getModel('eav/

entity_attribute_set')->load($_product->getAttributeSetId())->getAttributeSetName();

Orders

Order Model

$order = Mage::getModel('sales/order');

$customerOrderCollection = Mage::getModel('sales/order')->getCollection();

$customerOrderCollection->addFieldToFilter('customer_id', $customer_id);

Get Order Status

$order->getStatus();

Add Order Status History Comment

$comment = 'blah blah';

$order->addStatusHistoryComment($comment);

$order->save();

Load by Increment ID

$orderIncrementId = YOUR_ORDER_INCREMENT_ID;

$order = Mage::getModel('sales/order')

->loadByIncrementId($orderIncrementId);

Set Custom Order Status

// Custom status must exist

$order = $model->load($order_id);

$order->setStatus('delivered');

$order->save();

// change order status to 'Pending'

$order->setState(Mage_Sales_Model_Order::STATE_NEW, true)->save();

// change order status to 'Pending Paypal'

$order->setState(Mage_Sales_Model_Order::STATE_PENDING_PAYMENT, true)->save();

// change order status to 'Processing'

$order->setState(Mage_Sales_Model_Order::STATE_PROCESSING, true)->save();

// change order status to 'Completed'

90



$order->setState(Mage_Sales_Model_Order::STATE_COMPLETE, true)->save();

// change order status to 'Closed'

$order->setState(Mage_Sales_Model_Order::STATE_CLOSED, true)->save();

// change order status to 'Canceled'

$order->setState(Mage_Sales_Model_Order::STATE_CANCELED, true)->save();

// change order status to 'Holded'

$order->setState(Mage_Sales_Model_Order::STATE_HOLDED, true)->save();

Invoices

Get Invoice by ID

$invoice = Mage::getModel('sales/order_invoice')->load($invoiceId);

Capture invoice

if($invoice->canCapture()){

$invoice->capture();

}

if($order->canInvoice()){

$invoice = $order->prepareInvoice();

$invoice->register();

// Send email

$invoice->setEmailSent(true);

$invoice->getOrder()->setIsInProcess(true);

$transactionSave = Mage::getModel('core/resource_transaction')

->addObject($invoice)

->addObject($invoice->getOrder())

->save();

}

Shipments

Get all tracking numbers from shipments

$model = Mage::getModel('sales/order_shipment');

$tracks = $model->load(1)->getAllTracks();

//$collection = $model->getCollection();

//$data = $collection->getData();

foreach ($tracks as $track) {

echo $track->getNumber();

}

91



Shipping info for magento

$_order = $this->getShipment()->getOrder();

$_shippingAddress = $_order->getShippingAddress();

echo $_shippingAddress->getFirstname() . '<br />';

echo $_shippingAddress->getLastname() . '<br />';

echo $_shippingAddress->getCompany() . '<br />';

echo $_shippingAddress->getStreetFull() . '<br />';

echo $_shippingAddress->getRegion() . '<br />';

echo $_shippingAddress->getCity() . '<br />';

echo $_shippingAddress->getPostcode() . '<br />';

echo $_shippingAddress->getCountry_id() . '<br />';

Cart

Magento Cart Total

echo $this->helper('checkout')->formatPrice(Mage::getSingleton('checkout/

cart')->getQuote()->getGrandTotal());

Blocks

Call Static Block

echo $this->getLayout()->createBlock('cms/block')->setBlockId('block-name')->toHtml();

Admin

Permissions

/*

// Example code to get all the available permissions

$resources = Mage::getModel('admin/roles')->getResourcesTree();

$nodes = $resources->xpath('//*[@aclpath]');

echo '<dl>';

foreach($nodes as $node){

echo '<dt>' . (string)$node->title . '</dt>';

echo '<dd>' . $node->getAttribute('aclpath') . '</dd>';

}

echo '</dl>';

*/

var_dump(Mage::getSingleton('admin/session')->isAllowed('admin/sales/order/actions/scforce'));

92



Generate a link from an admin page

echo Mage::helper("adminhtml")->getUrl("mymodule/adminhtml_index/action/");

Programmatically change config data

// find 'path' in table 'core_config_data' e.g. 'design/head/demonotice'

$my_change_config = new Mage_Core_Model_Config();

// turns notice on

$my_change_config->saveConfig('design/head/demonotice', "1", 'default', 0);

// turns notice off

$my_change_config->saveConfig('design/head/demonotice', "0", 'default', 0);

Get Config Valus

$value = Mage::getStoreConfig('[MODULE]/[SECTION]/[FIELD]', $storeId

Common Config Values

//General contact

Mage::getStoreConfig('trans_email/ident_gerneral/name');

Mage::getStoreConfig('trans_email/ident_gerneral/email');

//Sales Representative

Mage::getStoreConfig('trans_email/ident_sales/name');

Mage::getStoreConfig('trans_email/ident_sales/email');

//Customer Support

Mage::getStoreConfig('trans_email/ident_support/name');

Mage::getStoreConfig('trans_email/ident_support/email');

//Custom email1

Mage::getStoreConfig('trans_email/ident_custom1/name');

Mage::getStoreConfig('trans_email/ident_custom1/email');

//Custom email2

Mage::getStoreConfig('trans_email/ident_custom2/name');

Mage::getStoreConfig('trans_email/ident_custom2/email');

Events
Mage::dispatchEvent($eventName);

93



Enterprise

Get Reward balance (enterprise)

$customer = Mage::getSingleton('customer/session')->getCustomer();

$reward = Mage::getModel('enterprise_reward/reward')

->setCustomer($customer)

->setWebsiteId(Mage::app()->getWebsite()->getId())

->loadByCustomer();

$balance = $reward->getPointsBalance();

echo $balance;

Miscellaneous

Connect directly to a table in Magento

$w = Mage::getSingleton('core/resource')->getConnection('core_write');

$result = $w->query('select 'entity_id' from 'catalog_product_entity');

if (!$result) {

return false;

}

$row = $result->fetch(PDO::FETCH_ASSOC);

if (!$row) {

return false;

}

Get the MySQL table name of any Magento Object

$r = Mage::getResourceSingleton('core/resource')->getConnection('core_read');

$tableName = $r->getTable('catalog/product');

94



Documentation for Magento Developers

Mark Sanborn, Mark Lehm, Ryan Leising, and Richard Fowler

Copyright (C) 2012 Mark Sanborn, Mark Lehm, Ryan Leising, and Richard Fowler.

Tweet about the book!

http://twitter.com/intent/tweet?url=http://magedocumentation.com/&text=Finally%20Documentation%20For%20Magento%20Developers!

	Documentation for Magento Developers
	Introduction
	About the Authors
	Mark Sanborn
	Mark Lhem
	Richard Fowler

	What This Book is Not
	Assumptions
	Feedback

	Prepping Your Magento Enviornment for Development
	Installing Magento
	MySQL Tools
	Setting the Time
	Turn on Symlinks
	Turn Caching Off
	Turning Error Reporting On
	Turn Logging On
	Extend the Session Timeout
	Create a Restore Point with Magentomatic
	Make a Database Backup


	Your First Extension
	Hello World!
	Step 1: Create a “Mycompany” folder under app/code/local
	Step 2: Create a “Myfirstmodule” folder.
	Step 3: Create the following folders inside (case matters!): Block, controllers, etc, Helper, Model, sql.
	Step 4: Under the etc folder create the file, config.xml.
	Step 5: Fill config.xml with:
	Step 6: Under, etc/modules create the file, Mycompany_Myfirstmodule.xml
	Step 7: Fill Mycompany_Myfirstmodule.xml with:
	Step 8: Make sure Magento is loading your extension, System > Configuration > Advanced

	Write Your First Controller
	Step 1: Modify your config.xml file in your module’s etc folder to include a new frontend router:
	Step 2: Create a new file, IndexController.php under your controllers folder and fill it with this:
	Step 3: Go to http://yourmageinstallation/myfirstmodule/index/index/
	GET and POST Variables

	Writing Output to the Log
	Explore Magento Objects/Snippits
	Example

	A Simple Admin Interface

	Understanding the Magento Directory Structure
	Code Pools
	Sample app directory folder
	Generate These Files Automatically
	Verify Your Extension is Running

	Models
	Creating a Model
	Collections and Querying
	Getting First and Last Items
	Limiting the Column Data
	Filtering
	Debugging the Query
	addAttributeToFilter Conditionals

	Creating the DB Table
	Overriding a Model
	Troubleshooting

	Alternative Way to Override a Model

	Blocks
	Overriding a Block

	Controllers
	Skipping The Block
	Creating Links
	Overriding a Controller
	Creating a Custom Router

	Helpers
	Creating a Helper
	Default Helpers

	Events
	Introduction
	When to Use Events
	Finding Events to Hook on to
	Alternative Way to Find Events to Hook on to

	Create Observer Class
	Working with Event Objects
	Creating Custom Events

	Admin Area
	Creating a “My Company” Extensions area
	Adding to your “My Company” area
	Module Configuration Interface
	Types of fields (frontend_type):
	Defining Default Values

	Creating an Admin Controller
	Adding Javascript

	Admin Grids
	Controller
	IndexController.php

	Grid Blocks
	Container.php
	Grid.php
	Edit.php
	Form.php


	Working With Teams
	Version Control
	Modman

	Bonus Chapters
	Creating a Custom Extension to Test Transactional Emails
	Initializing your Extension
	Create an Admin Backend
	Create a Controller

	A Tool For Automatically Creating Parts of your App
	Magentomatic
	Restore Admin Access
	Backup Database
	Restore Database
	Config Profiles
	Clear Cache

	Miscellaneous
	Cron Jobs
	Verify the Cron Job
	Default Cron Jobs in Magento

	Logging
	Examples
	Logging to your own file:

	Making Sense of Magento’s Naming Conventions
	Site-wide Notices
	Success
	Error
	Notice
	Warning

	Client-side Form Validation
	Accessing Magento Functions Outside of Magento
	Magento’s Image Resize Helper
	Add Column to Sales Order Table

	Recipes
	General
	Requests
	Session
	Customer
	Products
	Orders
	Invoices
	Shipments
	Cart
	Blocks
	Admin
	Events
	Enterprise
	Miscellaneous



